RELATIONSHIPS BETWEEN FACTORS AFFECTING THE LEVEL OF SERVICE PROVIDED BV A PAVEMENT AND MAINTENANCE COSTS
by
R. R. Long, Jr. Research Assistant
K. H. McGhee

Senior Research Scientist
G. R. Allen

Senior Research Scientist
(The opinions, findings, and conclusions expressed in this report are those of the authors and not necessarily those of the sponsoring agencies.)

Virginia Highway and Transportation Research Council
(A Cooperative Organization Sponsored Jointly by the Vinginia Department of Highwavs \& Transportation and the University of Vinginia)

Charlottesville, Virginia
March 1983
VHTRC 83-R32

SOILS, GEOLOGY AND PAVEMENT RESEARCH ADVISORY COMMITTEE

R. L. FINK, Chairman, Assistant Maintenance Engineer, VDHET
F. B. BALES, Photogrammetric Engineer, VDHET
J. P. BASSETT, Pavement Design Engineer, VDHET
D. D. BOOHER, Materials Engineer, VDHET
R. H. CANODY, District Materials Engineer, VDHET

ROBERT CHENG, Professor of Civil Engineering, Old Dominion Univ.
J. C. CLEVELAND, Assistant District Engineer - Construction, VDHET
E. L. COVINGTON, JR., Assistant District Engineer - Maintenance, VDHEJ
W. L. HAYDEN, Assistant Materials Engineer, VDHET

ROBERT KREBS, Associate Professor of Civil Engineering, VPI \& SU
H. G. LAREW, Professor of Civil Engineering, UVA
D. A. LAWLER, Bridge Design Engineer, VDHET
J. G. G. MCGEE, Construction Control Engineer, VDHET
K. H. MCGHEE, Highway Research Senior Scientist, VHETRC
W. A. MCKAY, Highway Geologist, VDHET
H. T. PETTIT, Area Engineer - Lynchburg-Fredericksburg, FHWA
J. T. WARREN, Director of Administration, VDHET

SUMMARY

This study attemoted to establish and analyze relationships between forms of deterioration or distress that reduce the level of service provided by a highway pavement and the cost of correcting them. Using statistical computer analyses of 30 highway projects, the most significant relationships were identified. Very strong statistical relationships were identified between axle loadings (ESAL-18's) sustained and maintenance costs and between pavement age and maintenance costs. For a large majority of the projects, it was found that the unaccounted for variables (principally environmental) had no significant influence on the relationship between ESAL-18's and maintenance costs.

With additional refinement, the results of this study could be used to predict needed levels of funding for highway maintenance activities.

RELATIONSHIPS BETWEEN FACTORS AFFECTING THE LEVEL OF SERVICE PROVIDED BY A PAVEMENT AND MAINTENANCE COSTS

by

R. R. Long, Jr. Research Assistant
K. H. McGhee

Senior Research Scientist
G. R. Allen

Senior Research Scientist

INTRODUCTION

Declining highway revenues over the past several years have led to increased attention to the levels of highway maintenance expenditures, particularly to the expenditures for maintaining the pavement structure. And concomitantly, increased attention has been given to determining the factors leading to the need for maintenance.

Highway engineers made great strides in assessing the factors leading to pavement deterioration in the early 1960 s with the completion of the AASHO Road Test. (1) In that test, numerous pavements were tested to failure through repeated applications of various axle loadings. The test results were used to define an $18,0001 b$. (18-kip) equivalent single axle load, often abbreviated as ESAL-18. ESAL-18 equivalency factors were then developed for various vehicle weights and axle configurations, depending upon the observed pavement damage related to those weights and configurations at the road test. Particularly noteworthy was the finding that passenger cars and light trucks contributed almost nothing to the structural damage undergone by the pavements. The results were further extended to develop design equations and charts in which projected ESAL-18 values, along with the characteristics of soils and paving materials and a regional factor related to unaccounted for variables, are major parameters.(2)

Following AASHTO's exhortations, the Virginia Department of Highways and Transportation, as have most major highway agencies, developed its own design guide patterned after the AASHTO approach, but with adjustment factors to accommodate variations in soils as they differ from those represented at the road test. (3) In this method, the pavement thickness index (a structural strength parameter) is a logarithmic function of cumulative ESAL-I8's to be sustained over the life of a pavement. The major maintenance cost is for resurfacings to restore the structural capability consumed in service.

With the development of such design approaches and the inferences drawn from their use, one would assume that assigning responsibility for pavement maintenance costs among the different categories of highway users would be a simple matter of documenting costs and traffic. Such has not been the case, as was recently demonstrated in two cost responsibility studies. (4, 5) The difficulty lies in the fact the AASHO Road Test was conducted over a short period of time (2 years) while in-service pavements are expected to perform adequately for 20 or more years. Thus, it is argued that pavement deterioration is, in fact, a function of both traffic and the environment, but that long-term environmental impacts were not evaluated by the AASHO Road Test. An extension of this argument is, correctly, that other design procedures, such as Virginia's, do not adequately address environmental considerations. Cost responsibility studies must, therefore, go beyond the parameters established in design procedures.

PURPOSE AND SCOPE

It was for the purpose of providing background for cost responsibility studies in Virginia that the present effort was undertaken. Both pavement maintenance costs and traffic data are readily available for primary and interstate highways in the state. Since some of this information recently had been summarized as part of a continuing research effort on the interstate system, (t) present study.

For a given pavement, ESAL-18's, pavement age, use of soil cement, thickness index, and soil resiliency factors were analyzed to assess their relation to pavement maintenance costs, and the strongest influences vere identified.

It was initially hypothesized that accumulated ESAL-18's and accumulated maintenance costs would be the most significantly related. If this proved to be the case, then the establishment of a relationship between ESAL-I8's and maintenance costs could permit the assignment of a dollar figure to ESAL-18 data.

METHODOLOGY

The approach selected was to identify statistically significant relationships between maintenance costs, traffic, and other
design parameters. The expected results would be somewhat clouded by the absence of a formai pavement management system where maintenance expenditures would be triggered by thresholds of pavement distress. It was recognized that historical expenditures such as presently available stem from a variety of factors among which are pavement distress, availability of funds, and an ingrained idea that pavements should be resurfaced every 3 to 10 years. Nevertheless it was hoped that an examination of the variabies would provide some insight for the attribution of maintenance costs among highway users.

Analytical Technique

The parameter relationships were evaluated using ordinary least squares regression analyses. Monitoring the coefficients of determination (R^{2} 's), the t-statistics, and the estimated coefficients permitted the assessment of the significance and the potential of the various relationships for use in predicting cost figures. Using this statistical approach, various equation specifications were examined, among them simple linear relationships between maintenance costs and the other parameters, log-linear relationships, and log-log relationships.

Data

The data base consisted of information collected from 133 flexible pavement projects located throughout Virginia's interstate highway system (refer to Appendix A). The maintenance cost information was collected and supplied by the Maintenance Division of the Virginia Department of Highways and Transportation. The following data were available for each project: location, length in miles, initial construction cost in dollars per $24-$ foot lane mile, average annual maintenance cost in dollars per 24 -foot lane mile, various design data (use of soil cement, thickness index, and soil resiliency), age in months, age in months at the time of each overlay, and estimated cumulative, and average annual 18-kip data in millions of ESAL-18's. (7)

Some initial adjustments to the data base were made. Minor changes were necessary in order to make the data reported by roadway maintenance section correspond to project construction sections.

ANALYSIS AND RESULTS

The analysis can be broken down into three iterative phases: FLEX, FLEX II, and FLEX III. The first two phases afforded quite poor results. The authors identified two factors which contributed to the poor results. First, in FLEX the cost data used were annual expenditures in current dollars. These data needed to be normalized for inflation in order for statistically valid results to be obtained. This was done for FLEX II, where all costs were normalized to 1980 dollars based on the Engineering News Record's highway cost indices.(8)

Secondly, the analyses were made on a cross section basis instead of on a time-series basis. In other words, the comparisons were made across a variety of projects located throughout the state. The better approach would have been to look at annual variations within individual projects and thereby eliminate discrepancies between projects.

This problem was corrected in the final phase of the analysis. FLEX included all 133 projects in cross section and FLEX II dealt with a cross section of 30 randomly selected projects. Finally, FLEX III analyzed, on an individual project time-series basis the 13 best of the 30 projects for which data were most nearly complete. (For a listing of additional FLEX III data please see Appendix B.)

Although the results from the first two phases did not prove to be satisfactory, some benefits were gained. The aforementioned problem areas were identified and insight was acquired into the mechanics of the various parameter relationships. Also, the results of simple correlation matrices indicated that age and ESAL-18 data were too highly correlated to permit a clear assessment of either's influence on the dependent variable, and therefore, that they must be analyzed in separate equations. Finally, it was demonstrated that the design parameters analyzedthickness index, use of soil cement, and soil resiliency-did not have any significant effects on maintenance costs. This result was anticipated since proper design should account for such variables.

The remainder of this section will consist of a discussion of FLEX III, the phase whicn yielded the most interesting results.

FLEX III

In this final phase of the study, the analyses included the correlations and adjustments made in an effort to correct and
account for the weaknesses and problems encountered in the earlier phases. All of these results were products of time-series analyses and the results were satisfactory both in terms of R^{2} 's and significance levels.

Table 1. FLEX III Input Variables

Variable	Description	Dependent or Independent
I, II, etc.	Project I, II, etc., annual maintenance expenditures in dollars per 24-foot lane mile	Dependent
IC, IIC, etc.	Project I, II, etc., accumulating annual maintenance expenditures in dollars per 24 -foot lane mile	Dependent
IK, IIK, etc.	Project I, II, etc., accumulating annual ESAL-18's in millions	Independent
IA, IIA, etc.	Project I, II, etc., accumulating pavement age in years	Independent
L1C, L2C, et	* $\ln (I C), \ln (I I C), ~ e t c$.	Dedendent
LIK, L2K, et	$\ln (I K), \ln (I I K)$, etc.	Independent
$\begin{array}{ll} \text { NOTE: } & \text { In } \mathrm{F} \\ & \text { trar } \\ & \text { numb } \\ & \text { from } \\ & \text { XVII } \end{array}$	II the randomly selected projects numbered 1 through 30. In FLEX II correspond to the numbers of the " EX II; namely I, II, XI, XII, XIV, XX, XXI, XXII, XXIII.	re arbi- the project est" projects , XVI, XVII,
*1n = natural	garithm	

From the rather detailed statistical output calculated by the computer program (see Appendix C), the coefficient of determination, $\left(R^{2}\right)$, and the t-statistic were monitored to indicate the predictive potential and the significance, respectively, of a given combination of parameters. R^{2}, which is optimally 1.00 , indicates the percentage change in the dependent variable that can be explained by a variation in the independent variable. For example, if running Project X 's costs against its ESAL-18's yielded an R^{2} of 0.95 , then 95% of the variation in costs can be accounted for by the variation in ESAL-18.

The t-statistic indicates whether or not two parameters are significantly related in a statistical sense. In these analyses, there are 12 degrees of freedom, and for this study a t-statistic of 2.681 or greater indicates that the relationship is not due to chance.

The results of the least squares regression analyses performed on the FLEX III projects are shown in Table 2 . This table shows that all of the results obtained in this phase were quite satisfactory, and it should be pointed out that classifying some results as better or some combination of parameters as best would be quite difficult to do with any degree of validity.

The equation specifications examined for each project were accumulating maintenance costs versus accumulating age (Cost vs. Age), accumulating maintenance costs versus accumulating ESAL's (Cost vs. Kips), accumulating maintenance costs versus ln of accumulating ESAL's (Cost vs. L Kips), and \ln of accumulating maintenance costs versus in of accumulating ESAL's (L Cost vs. L Kips). The logarithmic relationships were examined due to known similar relationships among design variables. The coefficients of determination all indicated statistically significant relationships between the variables. The indices ranged from 0.4371 to 0.9746 with only 13% of the values being below 0.7000 and 27% above 0.9000. These figures indicate that practically all of the variation in maintenance costs can be explained by the independent variables.

Determining the statistical significance of the various relationships by analyzing the t-statistics was a bit more involved, because the t-statistics were computed for two independent variables per project equation specification. Cost was the dependent and a form of age or kips and a constant were the independent variables. These constants (C) served as buffers against the effects of omitted variables (e.g. climatic conditions, deviation from standard procedures, equipment differences, mix variance, and topography differences).

The t-statistics given in Table 2 show that every equation specification for each project yielded a significant relationship between the dependent and independent variables. The t-statistics for age and kips were significant 100% of the time, whereas those for the constant were significant only 71% of the time. These results indicated that age or kips were more significantly related to maintenance costs than were the unaccounted for factors.
Table 2. FLEX III Results

Project	Cost vs. Age			Cost vs. Kips			Cost vs. L Kips			L Cost vs. L Kips		
	$\underline{\text { T-Statistic }}$		R^{2}	T-Statistic		R^{2}	T-Statistic		R^{2}	T-Statistic		R^{2}
	Age	C		Kips	C		L Kips	C		L Kips	C	
I	4.62	1.79	0.6405	5.46	1.65	0.7131	3.05	4.81	0.4371	8.28	37.10	0.8510
II	9.14	3.98	. 8744	8.37	2.22	. 8538	6.09	9.83	. 7553	8.70	26.27	. 8631
XI	10.17	5.69	. 8960	11.36	2.39	. 9149	7.52	7.19	. 8250	4.49	17.06	. 6273
XIT	10.17	6.06	. 8960	11.98	2.12	. 9229	7.47	5.05	. 8232	4.55	14.81	. 6331
XIV	9.62	4.76	. 8851	16.96	2.14	. 9599	7.67	6.01	. 8305	18.69	200.14	. 9668
XV	12.95	7.68	. 9332	19.12	5.25	. 9682	9.49	0.10	. 8825	13.11	64.67	. 9348
XVI	8.91	3.55	. 8686	7.92	0.33	. 8396	7.37	5.16	. 8191	11.45	27.22	. 9161
XVII	8.91	3.49	. 8687	7.63	0.24	. 8291	7.34	5.86	. 8180	11.00	54.54	. 9097
XVI I I	11.69	1.71	. 9192	7.73	2.04	. 8329	14.54	15.89	. 9463	6.22	37.93	. 7633
XX	5.30	2.73	. 7007	7.93	2.37	. 8399	3.80	2.23	. 5458	19.78	75.54	. 9702
XXI	9.94	4.19	. 8918	19.97	3.71	. 9708	6.39	5.28	. 7731	21.44	112.81	. 9746
XXII	8.75	3.54	. 8645	7.37	0.20	. 8191	9.95	6.83	. 8920	4.73	10.90	. 6508
XXII 1	6.89	2.09	0.7982	5.73	0.59	0.7326	8.69	5.59	0.8628	4.94	10.68	0.6709

A closer examination of the results for individual equation specifications more clearly defined the controlling factor in the relationship. For Cost vs. Kips, 11 out of 13 projects (85%) were not significantly influenced by the unaccounted for variables, which included environmental factors, design considerations, and age. The next highest percentage of projects where the constant was insignificant was for Cost vs. Age, with 3 out of 14 , or just 21%. These figures indicate that kips are the controlling variable in the maintenance cost relationships examined simply because the unaccounted for variables had no significant effects on the results 85% of the time.

Such a finding clearly suggests that it may be possible to ignore factors other than ESAL-18's in estimating maintenance costs on moderately to heavily travelled pavements such as those examined in this study. At the same time, Project I offers some evidence that it is difficult to assign causative factors to lightly travelled roads.

Finally, in an attempt to evaluate the practical applications of either pavement age or ESAL's in the prediction of annual maintenance costs, the authors selected known age or kip figures and the estimated coefficients as calculated by the computer program to estimate maintenance costs for a project in a given year. The actual cost figures were then compared with the estimates. The results of these comparisons can be seen in Table 3, and sample calculations may be found in Appendix D. When assessing the estimates it should be kept in mind that these values were determined using figures taken from the mean of the sample, and although the estimates were not extremely accurate, they did give good general figures with which to work. Another big problem with cost projections like these is probably the Department's spending patterns, which vary throughout the year and from year to year. For example, in Project XVI the actual expenditure was $\$ 163$; however, the very next year the expenditures jumped to $\$ 833$. Likewise, in Project XVII the expenditures jumped from $\$ 40,362$ up to $\$ 206,162$ in just one year. So, annual estimates of such varying actual figures are bound to be rough estimates.

The authors believe that this estimation technique shows promise as a tool for projecting highway maintenance costs, providing the rising trend in inflation continues at approximately the same rate. However, more work is needed, specifically in the number of projects analyzed. A greater number of projects must be included to give the estimates more statistical strength.

Overall, the results obtained in this study were excellent and provided a great deal of insight into the mechanics of highway maintenance costs as a function of other highway maintenance parameters.

Project	Actual Costs	Cost vs. Age		Cost vs. Kips		Cost vs. L Kips		L Cost vs. L Kips	
		Est. Cost	\% Diff.						
I	51,865	40,044	- 23	44,221	- 15	30,306	- 42	39,878	- 23
II	246,753	236,206	- 4	236,492	- 4	214,910	- 13	423,526	+ 72
XI	159,766	140,030	- 12	123,185	- 22	173,661	+ 9	37,531	- 77
XII	62,141	66,399	+ 7	54,943	- 12	83,907	$+35$	12,043	-81
XIV	28,400	35,632	+ 26	31,646	+ 11	43,908	+ 55	31,194	+ 10
XV	11,629	18,347	+ 58	26,477	+128	24,448	+110	23,287	+100
XVI	163	1,263	+675	1,044	+541	1,670	+925	318	+ 95
XVII	40,362	312,484	+674	264,906	+556	410,413	+917	76,780	+ 90
XVIII	51,901	42,763	- 18	38,451	- 26	47,771	- 8	18,586	- 64
XX	2,270	5,856	+158	2,776	+ 22	7,838	+245	2,207	- 3
XXI	4,597	14,895	+224	10,233	+123	18,725	+307	6,950	+ 51
XXII	149,910	142,204	- 5	142,922	- 5	156,220	+ 4	7,042	- 95
Xxili	27,664	40,407	+ 46	37,758	+ 36	38,454	+ 39	2,346	- 91

Table 3. FLEX III Estimates in Dollars

SUMMARY OF FINDING AND CONCLUSIONS

1. Very strong statistical correlations were established between cost and kips and between cost and age when analyzed on a project-by-project (time-series) basis.
2. In 35% of the projects analyzed, the omitted variables had no significant influences on maintenance costs. For the equation specification Cost vs. Kips, the influence of the omitted variables was not significant 85% of the time.
3. No statistically significant relationships were established on a cross section Dasis for the entire data set-probably due to the inherent differences between projects.
4. Basic pavement design was verified by the finding that design parameters such as the use of soil cement, thickness indices, and soil resiliency factors had no influence on maintenance cost relationships.
5. A good technique for predicting needed pavement maintenance funding levels could be derived from the relationships established in using projected kip data to predict cumulative maintenance costs.
6. The methodology implemented in this study could easily be used with future, similar analyses, providing improvements are made on the quality of the data base. The data base problems are clearly illustrated in this study by the use of only 13 out of 133 projects for in-depth analyses. Such data constraints force the evaluation of results to be made on a project-by-project basis rather than on a cross section basis.

REFERENCES

1. The AASHTO Road Test Report 5, "Pavement Research", Special Report 61-E, Highway Research Board, 1962.
2. AASHTO Interim Guide for Design of Pavement Structures, Transportation Research Board, 1972.
3. Vaswani, N. K., "Recommended Design Method for Flexible Pavements in Virginia," VHTRC 71-R26, March 1972.
4. U. S. Department of Transportation, "Final Report on the Federal Highway Cost Allocation Study," May 1982.
5. Joint Legislative Audit and Review Commission, The Virginia General Assembly, "Cost Responsibility in Virginia," 1981.
6. McGhee, K. H., "A Review of Pavement Performance on Virginia's Interstate System," VHTRC 77-R24, 1976.
7. Vaswani, N. K., "Estimation of 18-kip Equivalent on Primary and Interstate Road Systems in Virginia," Highway Research Record 466, 1973.
8. Engineering News Record, December 18, 1980, p. 102.

APPENDIX A
FLEXIBLE PAVEMENT DATA

Legend

FLEXIBLE PAVEMENT SUMMARY

	｜lullll	［愛	
言		喊	
	ニٌ® ®－－	気 こ こ	
妾		号言言点	
\cdots	三		
部离	\％		
这雱			丂ワ
4		）＝－\％	そここきか
	$\underset{\sim}{\square} \mathrm{O}$		
\square			
$\stackrel{5}{8}$			
${ }^{\frac{1}{5}}$	¢8．	¢	－
3	¢08080	¢ 0	\bigcirc
：			
或歌		－－2	
	¢ٌo		¢ ปสテ
－		$\stackrel{\sim}{\dot{j}}$	\％\％
：			
\％			
吕		｜cclay	

＊EBL only
b FLEX II and III

离家家	［10			
家		（i）		
				へ
	웅운윤 㽞		¢్ల్ర矿号	
解会				
			a	\approx
	あすぎ		Ξ	2 \％
	® $\because 20$	$\bigcirc \underbrace{\infty}$	ッニッ	$\cdots{ }^{3} 3$
	$\underset{\sim}{\text { c．}}$		－	$\cdots \sim$
	¢ $0 \cdot 0$	$\stackrel{\square}{6}$	\bigcirc	¢
				？
	\bigcirc			
旁		$\cdots \stackrel{\circ}{\dot{\circ}}$	？	－
	$\stackrel{\circ}{\infty} \times$	○ $0 \stackrel{\circ}{\circ}$	－ 0	○ 0 ¢ 0
4				
	さ \ddagger	\％		®®
	$\pm \sim \underset{\sim}{\sim}$	ํ．	$\stackrel{\square}{\circ}$	\％${ }^{\text {\％}}$
	（ccccc	（10ccr		（\％
令	$\stackrel{\sim}{\sim}$	¢	$\underset{\sim}{\text { Noncoig }}$	
2				
$\stackrel{\text { ¢ }}{4}$				
刨			－ 这家宫高 方客	
$\stackrel{*}{3}$	\|			边呂言言娈

Flexible Pavement Summary (Continued)

*Does not include 0.8 Mi. Tunnel

咅咅		\％	\％${ }_{\text {¢ }}^{\text {¢ }}$		
	$\underset{\sim}{\text { axm }}$		$\stackrel{\square}{\square}$		¢ٌ
5	号気号咢可				
\％	碞号	$\because \%$	○ 語品品	枵号	\％ios
亲	ごき こ す	¢		亏嵒	
	ござロニ		\ddagger－320		ミニ®
		호－			－玉玉足ご
	$\xrightarrow{\sim}$				何ごさ
\square					
咅					
\％	O－	\bigcirc	－		
\because		寿		¢0\％	
\％					
		${ }^{\text {P }}$	\pm－		\％
$\begin{aligned} & \text { an } \\ & \hline 10 \end{aligned}$					
${ }_{3}$		${ }^{\text {g }}$	¢		－
2		\square 			
2					
2					
3					

[^0]*Less than 50% project overlaid
$* *$ NBL only
Flexible Pavement Summary (Continued)

101

APPENDIX B

FLEX III DATA

FLEX III Projects' Annual Cumulative Cost and ESAL-18 Data

	Project I		Project II		Project XI	
	Cost ${ }^{1}$	Kips ${ }^{2}$	Cost	Kips	Cost	Kips
1966-67	58	0.035	0	0.098	0	0.302
67-68	1,574	0.083	965	0.164	16,301	0.433
68-69	4,571	0.1355	3,633	0.2295	21,850	0.584
69-70	5,429	0.189	3,633	0.314	23,569	0.7475
70-71	5,429	0.2535	5,358	0.405	94,220	0.9205
71-72	6,091	0.318	8,438	0.488	159,766	1.105
72-73	6,091	0.3775	83,525	0.5685	161,384	1.2945
73-74	8,334	0.446	167,677	0.65	161,819	1.4855
$74-75$	8,845	0.52	220,352	0.7345	167,401	1.6835
75-76	9,363	0.60	223,164	0.8295	202,648	1.921
76-77	9,913	0.688	242,076	0.9405	420,462	2.212
77-78	50,633	0.78	246,753	1.0615	450,743	2.5635
78-79	51,865	0.871	247,593	1.1845	452,253	2.9945
79-80	51,865	0.965	247,596	1.3055	454,524	3.4595

	Project XII		Project XIV		Project XV	
	Cost	Kips	Cost	Kips	Cost	Kips
1966-67	0	0.331	12,863	0.356	9,051	0.709
67-68	10,752	0.491	13,410	0.5095	10,205	0.9045
68-69	14,410	0.6705	14,085	0.674	11,629	1.121
69-70	15,541	0.8585	24,545	0.848	61,316	1.3535
70-71	62,141	1.054	28,400	1.03	69,454	1.597
71-72	105,375	1.269	36,601	1.23	86,769	1.8645
72-73	106,443	1.575	41,578	1.375	97,278	2.1495
73-74	106,730	1.893	50,808	1.6505	141,122	2.547
74-75	110,412	2.159	55,066	1.9355	150,108	2.9055
75-76	133,660	2.4965	80,951	2.24	204,756	3.2465
76-77	277,325	2.9025	105,900	2.6485	257,426	3.6655
77-78	297,297	3.3715	149,068	3.175	350,259	4.1695
78-79	298,293	3.8625	154,691	3.773	362,128	4.7785
79-80	299,791	4.359	158,902	4.455	371,017	5.4675

[^1]| | Project XVI | | Project XVII | | Project XVIII | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Cost | Kips | Cost | Kips | Cost | Kips |
| 1966-67 | 15 | 0.2165 | 3,256 | 0.2025 | 779 | 0.241 |
| 67-68 | 30 | 0.403 | 7,335 | 0.3805 | 839 | 0.42 |
| 68-69 | 40 | 0.598 | 10,227 | 0.569 | 25,928 | 0.6065 |
| 69-70 | 91 | 0.83 | 22,582 | 0.7845 | 28,199 | 0.801 |
| 70-71 | 163 | 1.1155 | 40,362 | 1.03 | 51,901 | 1.049 |
| 71-72 | 833 | 1.4765 | 206,162 | 1.3175 | 61,739 | 1.394 |
| 72-73 | 3,317 | 1.9055 | 820,787 | 1.686 | 61,755 | 1.8135 |
| 73-74 | 3,854 | 2.337 | 953,507 | 2.102 | 62,313 | 2.25 |
| 74-75 | 3,856 | 2.7705 | 953,795 | 2.517 | 100,542 | 2.6805 |
| 75-76 | 3,884 | 3.2405 | 960,571 | 2.9555 | 102,780 | 3.146 |
| 76-77 | 3,894 | 3.7675 | 963,140 | 3.472 | 103,098 | 3.6475 |
| 77-78 | 3,937 | 4.403 | 973,899 | 4.06 | 103,827 | 4.181 |
| 78-79 | 4,202 | 5.118 | 1039,632 | 4.73 | 106,098 | 4.757 |
| 79-80 | 5,939 | 5.836 | 1469,404 | 5.436 | 106,487 | 5.3235 |
| | Project XX | | Project XXI | | Project XXII | |
| | Cost | Kips | Cost | Kips | Cost | Kips |
| 1966-67 | 55 | 0.185 | 303 | 0.181 | 0 | 0.4725 |
| 67-68 | 334 | 0.3635 | 1,321 | 0.3495 | 882 | 0.6535 |
| 68-69 | 439 | 0.549 | 2,002 | 0.528 | 3,970 | 0.841 |
| 69-70 | 1,548 | 0.7395 | 2,441 | 0.7125 | 149,910 | 1.042 |
| 70-71 | 1,732 | 0.95 | 4,163 | 0.898 | 299,150 | 1.265 |
| 71-72 | 2,270 | 1.214 | 4,597 | 1.0915 | 330,343 | 1.518 |
| 72-73 | 2,321 | 1.5965 | 15,537 | 1.3235 | 331,060 | 1.804 |
| 73-74 | 7,169 | 2.044 | 15,565 | 1.614 | 331,060 | 2.104 |
| 74-75 | 7,198 | 2.4905 | 29,132 | 1.9885 | 334,289 | 2.4115 |
| 75-76 | 7,254 | 2.972 | 30,920 | 2.4565 | 334,447 | 2.6585 |
| 76-77 | 9,335 | 3.5155 | 33,031 | 2.9715 | 334,536 | 3.0545 |
| 77-78 | 25,312 | 4.1375 | 53,615 | 3.531 | 450,256 | 3.4815 |
| 78-79 | 29,428 | 4.79 | 61,903 | 4.122 | 474,137 | 3.958 |
| 79-80 | 43,386 | 5.3685 | 63,663 | 4.6915 | 576,377 | 4.4435 |

Project XXIII

	Cost	Kips
$1966-67$	0	0.4725
$67-68$	1,018	0.6535
$68-69$	2,903	0.934
$69-70$	27,664	1.228
$70-71$	91,012	1.451
$71-72$	92,145	1.7085
$72-73$	93,157	1.999
$73-74$	93,157	2.299
$74-75$	93,539	2.6065
$75-76$	93,539	2.9575
$76-77$	94,187	3.3575
$77-78$	112,672	3.7845
$78-79$	122,731	4.261
$79-80$	123,717	4.747

APPENDIX C SAMPLE COMPUTER PRINTOUT

The following is a sample computer output-in this case for Project XIV Cost vs. Kips.

As mentioned earlier, the estimated coefficients, t-statistics, and R2's were examined for each equation specification for each project.

For this project, the R^{2} is quite high and indicates that there is a strong statistical relationship between the dependent and independent variables. The t-statistics show that kips have a significant influence on costs. Conversely, the omitted variables (C) do not have a significant influence on costs (the minus sign can be disregarded-it's the result of the negative estimated coefficient).

[^2]Here again, Project XIV's data will be used. The authors selected the cumulative annual kip figure closest to 1.0 kip . This figure identified the year for which the cost estimate would be derived. The actual, annual cumulative maintenance cost figure for that year could then be used for comparisons.

Project XIV

For 1970-71: Kips $=1.03$

$$
\text { Cost }=\$ 28,400
$$

Estimated Coefficients: For Kips $=42144.8$

$$
\text { Eor C }=-17763.0
$$

$$
y=m x+b
$$

Cost $=$ Est. coef. for kips (kips) + est. coef. for c
Cost $=42144.8(1.03)+(-11763.0)$
Cost $=\$ 31,646$.
$\$ 31,646$ is 11% more than the actual cost figure of $\$ 28,400$.

[^0]: ＊Less than 50% project overlaid

[^1]: ${ }_{2}^{1}$ Cost per 24 ft . wide lane mile.
 Cumulative ESAL-18's in millions.

[^2]: APPENDIX D
 SAMPLE ESTIMATE CALCULATION

